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synopsis 
The relative shear moduli of composites containing glass spheres in a rubbery matrix 

obey the Mooney equation, analogous to the relative viscosity of similar suspensions in 
Newtonian liquids. However, when the matrix is a rigid epoxy, the relative shear 
moduli are less than what the Mooney equation predicts but greater than what the 
Kerner equation predicts. Relative moduli are less for rigid matrices than for rubbery 
matrices because (1) the modulus of the filler is not extremely great compared to that 
of the rigid matrix; (2) Poisson’s ratio is less than 0.5 for a rigid matrix; (3) thermal 
stresses in the matrix surrounding the particles reduce the apparent modulus of the 
polymer matrix because of the nonlinear stress-strain behavior of the matrix. This 
latter effect gives rise to a temperature dependence of the relative modulus below the 
glass transition temperature of the polymer matrix. Formation of strong aggregates 
increases the shear modulus the same as viscosity is increased by aggregation. Torsion 
or flexure tests on specimens made by casting or by molding give incorrect low values of 
moduli because of a surface layer containing an excess of matrix material; this gives rise 
to a fictitious increase in apparent modulus as particle size decreases. The mechanical 
damping can be markedly changed by surface treatment of the filler particles without 
noticeable changes in the modulus. The Kerner equation, which is a lower bound to 
the shear modulus, is modified and brought into closer agreement with the experimental 
data by taking into account the maximum packing fraction of the filler particles. 

INTRODUCTION 
The discrepancy between theoretical predictions and experimental 

results for the moduli of particulate-reinforced polymers continues as one 
of the limitations to the understanding of composite materials. The im- 
portance of this arises because particulate systems are often used as a basis 
for the interpretation of the mechanical behavior af composites in which the 
filler is of more complex geometry. In  addition, a description of the 
mechanical properties presently requires the use of upper and lower 
boundaries, which are reviewed in the survey of Hashin. 

Here we attempt to resolve several of the differences between theory and 
experiment by carrying out measurements of the dynamic mechanical 
properties of a crosslinked polymer reinforced with spherical particles using 
a torsion pendulum. This system can be accurately defined, several ex- 
perimental parameters can be varied in a controlled manner, and qom- 
parison to theories in the literature can be readily made. The dynamic 
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properties under investigation include shear modulus G', loss modulus G", 
logarithmic decrement or damping A, and the glass transition temperature 
T,. The experimental variables include particle size and volume fraction 
of filler, in addition to temperature. The effect on the mechanical proper- 
ties of silane coupling agents applied to dispersed spheres is presented. 
Also, experiments are described with the filler being permanent aggregates 
of spheres characterized by a narrow distribution of number of spheres per 
aggregate. 

The experimental results are used to interpret several equations in the 
literature. In addition, the results are compared to the recently reported 
work on the relative viscosity of suspensions of dispersed and permanent 
aggregates of spheres. 

The relation of relative increase in modulus of reinforced solids to relative 
increase in suspension viscosity was first proposed by Goodier,2 and Small- 
wood8 and Guth' showed their equality, i.e., 

GI' = ~r (1) 

with GI' = G,'/G,' and qr = qo/ql,  where q is viscosity, and r indicates 
relative value; c, the composite or suspension; and 1, the matrix or sus- 
pending fluid. Since this equation was introduced, other papers have 
also been directed to showing its theoretical validity, but it has been 
shown experimentally only for limited cases of filled elastomers (see, e.g., 
Landel and Smith5). 

A large number of equations of relative modulus of filled systems are in 
the literature, and they predict a smaller increase with filler concentrations 
than is obtained for shear viscosity of suspensions. One of the more 
popular of the equations is by Kerner' and usually serves as a lower bound. 
The more recent treatments of the elastic moduli of two-phase and multi- 
phase media use the variational principles of the theory of elasticity.' 

At the same time, equations have been introduced for shear 'viscosity 
which very accurately predict the dependence on filler concentration.8 The 
viscosity data have been shown to fit the Mooney equation9 most accu- 
rately, although several equations predict about the same behavior for 
& 5 0.20. To illustrate the difference in predictions of modulus and vis- 
cosity, at  a filler concentration of & = 0.40, the viscosity as predicted by 
Mooney exceeds the modulus value of Kerner by 300'%. 

Experiments to measure viscosity of suspensions are easier to carry out 
and can be obtained with a greater degree of accuracy than experiments for 
modulus. Experimentally, the modulus data generally exhibit a smaller 
increase than viscosity of suspensions as a function of filler concentration. 
The usefulness of establishing the extent to which eq. (1) is valid arises 
because the matrix material of a composite is often initially in the fluid 
state prior to curing. If relative modulus were equal to, or directly related 
to, relative viscosity, the value of modulus for the reinforced polymer sys- 
tem in the cured state could be established from a viscosity measurement of 
a suspension with the uncured polymer. 
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In  the study of relative moduli of filled solids, it is recognized there are 
three conditions which can affect the modulus value which are not present 
in suspensions and consequently cannot have any influence on relative 
viscosity. 

The first is the magnitude of the ratio of filler modulus to matrix modulus 
and the consequent boundary conditions imposed at & = 1.0 and +z = +m, 

where +m is the maximum volumetric packing fraction of filler. At & = 
1.0, the system is entirely filler, so G,‘ = G2’/G1‘. The value a t  +,,, is 
defined as G,‘ = (G,’)*, where the magnitude of (G,’)* is dependent on the 
value of GZ‘/G1‘ and +m. The functional dependence of G,‘ and & above 
and below +m would be expected to differ since the filler would change from 
the discontinuous to the continuous phase. However, many equations, 
including the above-mentioned Kerner expression, are continuous functions 
for 0 I qh I 1.0. However, it is only meaningful to consider reinforcement 
in the region 0 < & < dm. In  contrast to relative modulus, the following 
condition holds for relative viscosity: 

q r  - as qh + +m. 

The equating of relative modulus to relative viscosity in eq. (1) could 
only be expected to hold in the limiting case when (G2’/Gl’) is very large 
and the value of +m for filled solids equals the value for suspensions. In 
the common systems of glass-epoxy and boron-epoxy, (Gz’/G1’) is 25 and 
125, respectively. Experimentally the maximum volumetric packing 
fractionlO*ll for a bed of spheres is described as random close packing, with 

The second condition is the presence of induced stresses in the com- 
posite. These can arise either from shrinkage of the polymer during cure or 
owing to the difference in the thermal expansion coeflicients of the phases, 
in which case the stresses develop as the composite cools down after fabri- 
cation from the elevated molding temperature or postcure temperature. 
A recent paper12 deals with the change in modulus resulting from stresses 
arising from the mismatch of expansion coefIicients and describes the effect 
on the part,icular composites under investigation here. 

The third condition is the dependence on temperature of two matrix 
properties : Poisson’s ratio and shear modulus. For rigid polymers, 
Poisson’s ratio does not equal 0.5, while above T, it does equal this value. 
The magnitude of G2‘/G1’ increases slowly with temperature in the glassy 
region since the temperature dependences of G2’ and G1’ are not equal, and 
the ratio increases markedly in the region of T,. 

+m = 0.64. 

EXPERIMENTAL 
Glass beads in an epoxy matrix are selected for the measurements. The 

epoxy (Epon 828, Shell Chemical Co.) is diluted with 5% phenyl glycidyl 
ether (Lot #5HHE112, Shell Chemical Co.) and cured with triethylene- 
tetramine (T-410, Fisher Scientific Co.). The glass beads, soda lime type 
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(from Microbeads Div. of Cataphote Corp.), are carefully cleaned of the 
metd particles normally found in this material and are sieved for narrow 
particle size distributions; the surfaces are cleaned by refluxing in iso- 
propanol. Particle size ranges for the glass spheres are 5-10, 10-20,30-40, 
and 75-90 p. For each of the ranges at  least 95% of the particles are 
within the limits. 

The resin is heated in a flask to 40°C and the pressure is reduced to 5 mm 
Hg to remove absorbed air and water. The beads are added with stirring 
and dispersed by lowering the flask into an ultrasonic cleaning bath (Son- 
agen D-50, Branson Instruments, Inc.). The curing agent is added with 
the suspension at  25°C while stirring. The total suspension is then stirred 
for about 5 min under vacuum. A sheet of the sample is formed by pouring 
the filled epoxy suspension between 6 in. X 6 in. glam plates coated with a sil- 
ane release agent (SC 87, General Electric Co.) and separated by about 
0.050 in. The beads are of sufficiently small diameter and the epoxy of a den- 
sity and viscosity that settling is very slight. The casting is maintained in 
an exact vertical position for 24 hr at  25°C during which time the initial 
cure took place. For postcuring, the sample is subjected to an oven cure 
of 60°C for 3 hr, 100°C for 6 hr, and 140°C for 4 hr after which it is allowed 
to cool slowly in the oven which had been shut off. The glass transition 
temperature of the matrix is 121°C. Samples are cut horizontally in the 
middle section of the castings so that any effect due to settling would be 
minimized. 

An initial cutting of the samples is made with a diamond saw followed by 
a high-speed router using a carbide tool (Tensilkut, Sieburg Industries, 
Inc.). The nominal dimensions of the samples are 4 in. X 0.180 in. X 
0.050 in. 

The dynamic mechanical properties, shear modulus, damping, and glass 
transition temperature are measured on a recording torsion pendulum.'3 
The glass transition is measured as the temperature of the maximum in the 
mechanical damping peak at about 1 Ha. The theory and discussion of 
dynamic mechanical testing is presented by Nie1~en.l~ 

For the experiments with coated glass spheres, silane treatments are 
applied using the technique described by Kenyon and D&ey.l6 Their 
tensile strength data on silane-coated glass spheres in epoxy are used as a 
basis for the selection of the silanes for good and poor adhesion. These 
are gamma-glycidoxyproplytriethoxysilane (A187, Union Carbide Com- 
pany) and methylchlorosilanes (SC 87, General Electric Company) for 
good and poor adhesion, respeatively. 

The permanent aggregates of spheres used are the identical filler de- 
scribed in the recent paper16 on visoosity of suspensions with aggregates and 
contain a specific distribution of particles per aggregate. 

Volume fraction of filler is determined by burn-off of resin and density 
measurements. 

Stress-strain results on the pure resin are obtained on samples cast 
between 6 in. X 6 in. glass plates with a separation of '/8 in. and machined 
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as standard ASTM D-638 samples. The measurements are carried out 
with an Instron testing machine (Instron, Canton, Mass.) at  a strain rate of 
0.01 min-l. 

RESULTS AND TREATMENT OF DATA 

Shear modulus and damping for the dispersed spheres in the epoxy 
matrix are measured as a function of temperature for several values of 
volume fraction and particle size of filler. TQe temperature range normally 
is from 100°C below to 50°C above the glass transition temperature. The 
amount of filler in the samples varies from unfilled to a volume fraction of 
about 0.40. 

Representative data are shown in Figure 1 for shear modulus G’, loga- 
rithmic decrement or damping A, and calculated loss modulus G” versus 
temperature for samples of pure matrix and a high volume fraction of 
spheres. (G” is determined using experimental values of G’ and A in the 
expression G” = A G ’ / ~ . )  The reproducibility of measuring shear moduli is 
2y0-3%, and for damping it is =!=50/0. Although most of the results in this 
paper are in the temperature range 100°C below to 50°C above the glsss 
transition, the data in Figure 1 include results at  lower temperatures ex- 
tending to the region of a secondary glass transition. The behavior illus- 
trated with these curves indicates that in general when a filled system is 
compared to an unfilled material, the values of the moduli G‘ and G” show 
an increase and damping A decreases. Here, the transition between the 
glass and rubbery regions is specified as T;  and defined by the maximum 
in the damping curve. 

For shear modulus below the glass transition, log G’ decreases linearly 
with T and about 20°C below T ,  starts the decrease of nearly two orders of 
magnitude and levels off about 10°C above To. The negative slope in the 
linear region of the log GI-T curve below the glass transition is a function of 
volume fraction filler and accounts for the positive slope of the relative 
modulus-temperature curves in Figure 2. The change in relative modulus 
with temperature is primarily due to induced tensile stresses by the differ- 
ence in thermal expansion coefficients of the phases. l2 If the stresses were 
not present, the value of relative modulus at all temperatures would be the 
value obtained by extrapolation of the data points below T ,  in Figure 2 
to the glass transition where the stresses are zero. The shape of the shear 
modulus curves above To changes with volume fraction filler, ay is shown in 
Figure 1. Although this is also exhibited in similar systems in the litera- 
ture, there is no apparent explalanation. A positive slope for log G’-T is pre- 
dicted by the kinetic theory of rubber-like elasticity. In the presence of 
filler, the positive slope is not observed and G’ remains constant with the 
temperature, except for the cases of t& 2 0.40, and then G’ shows a small 
decrease with temperature. 

The change in the glass transition with the incorporation of filler in a 
polymer is treated extensively in the literature (see, e.g., Landel,” Kumins 
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Fig. 2. Relative modulus vs. temperature for epoxy with spheres of diameter 10-20 p. 

Solid curves are drawn through the experimental points to indicate the modulus-tem- 
peratureslopes: (+)& = 0.41; (A)+, = 0.30; ( X ) &  = 0.19; (O)& = 0.10. 

and Roteman,'* Lipatov et  al.,19 Shreiner et al.,20 and SmitZ1). Here, only 
a quite small increase in T ,  is observed, as indicated in Table I for various 
conditions of particle size and volume fraction. 

The accuracy associated with damping measurements is valid for values 
of A 5 1.0, above which the accuracy is greatly reduced due to difficulty in 
making the measurement. Smooth curves are drawn through all of the 
sets of experimental damping data with a maximum of Am = 3.0; however, 
there is no significance to be attached to a fixed value of Am for all experi- 
mental conditions, except that it is a typical value. 

For the few experiments in the region of the low-temperature secondary 
glass transit,ion, the damping curve is very broad arid the modulus curw 
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TABLE I 
Glass Transition and Relative Modulus Data 

G,' at (T - TB) 
Diameter, p +2 T, -100°C -8OOC -60°C -40°C -20°C 

5-10 0.26 122 1.85 1.88 1.93 1.98 1.99 

0.19 123 1.52 1.51 1.51 1.51 1.57 
0.30 123 1.93 1.97 2.00 2.06 2.04 
0.41 123 2.63 2.75 2.84 2.97 3.03 

30-40 0.10 123 138 1.19 1.20 1.22 1 . Z  
0.23 123 1.56 1.57 1.58 1.61 1.02 
0.30 123 1.89 1.97 2.04 2.08 1.96 
0.40 124 2.41 2.50 2.60 2.64 2.49 

0.05 121 1.10 1.12 1.10 1.10 1.10 
0.10 121 1.23 1.21 1.20 1.17 1.19 
0.15 122 1.27 1.29 1.29 1.29 1.30 
0.19 122 1.49 1.49 1.46 1.46 1.49 
0.24 122 1.66 1.66 1.64 1.64 1.66 
0.31 122 1.94 1.91 1.91 1.91 1.91 
0.32 122 1.94 1.95 1.96 1.98 1.96 
0.38 123 2.32 2.34 2.38 2.44 2.41 

1&20 0.10 122 1.20 1.19 1.22 1.22 i . a8  

75-90 0.02 121 1.03 1.03 1.02 1 .0  1.0 

shows very little deviation with temperature from one side to the other of 
the transition, as indicated in Figure 1. 

Relative Modulus of Dispersed Spheres 
The reinforcement in shear modulus produced by filler concentration in a 

particulate reinforced polymer sample is normally described relative to the 
value of the unfilled sample and is computed for a given volume fraction 
at temperatures relative to the glass transition, i.e., at T - To, for the unfilled 
and filled samples. In Figure 2, typical data of relative modulus are 
plotted at  four volume fractions for spheres of diameter d = 10-20 p,  

Because of the very large changes in absolute values of modulus at tem- 
peratures in the transition region, it is not meaningful to include points for 
temperatures near T,. Marked differences in G,' can be observed for 
temperatures above and below T,.  There is more than a 50% increase in 
relative modulus from below to above T,  for samples with & > 0.30. This 
is in general agreement with experimental results considered by Nieluen. l4 
Below T,, a dependence on temperature for G,' is indicated by the positive 
slope for each modulus-temperature curve. Similar behavior to that 
shown in Figure 2 is observed for all particle sizes, although the slopes are 
not as large with increased particle diameter. 

In Table I, values of G,' are included for the different particle size ranges 
at  several temperatures and volume fractions. 

For comparison to theory, relative moduli are usually plotted versus 
volume fraction, and typical data are shown in Figure 3 below the glass 
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VOLUME FRACTION FILLER. #p 

Fig. 3. Relative modulus vs. volume fraction filler for dispersed spheres in epoxy. 
Solid curves are drawn through d = 10-20 p, 3 W  p, and 75-90 p data points. Data 
points correspond to a temperature extrapolation in the region below the glass transition 
to T = T,. Dashed curve is obtained by extrapolation of results to d = 0: (0) d = 
5-10 p ;  (A) d = 1&20 p; (X  ) d = 3 N O p :  (0) d = 75-9Op. 

transition for different particle size ranges. In order to eliminate the 
effect of induced stresses on modulus, the data for Figure 3 are obtained by 
extrapolation of relative modulus-temperature data to T,. In Figure 4, 
relative modulus-versus-volume fraction curves are plotted for particle 
size ranges above T,. 

In  addition to the dependence of relative modulus on temperature, there 
is an increase in relative modulus with decreasing particle size, as indicated 
in Figures 3 and 4. 

For the relative viscosity measurements, no particle size effect for the 
size range of interest is observed, in contrast to the one observed for relative 
modulus. Here, the change with filler diameter is either a characteristic 
of these systems or due to an instrumental error. A consideration of the 
shear field produced within the sample during the torsional oscillation sug- 
gests the validity of the latter reason. The shear stress is a maximum at 
the outer edges and faces and zero at the center.22 In the direction of the 
thickness t of the sample, the stress can be assumed to rise linearly from 
zero to the maximum stress level a.t the two faces of the sample. It is in 
the regiou of the faces that there is the poorest distribution of the filler and a 

In  this case, the temperature is T ,  + 20°C.' 
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T= T9+20eC 

VOLUME FRACTION FILLER, & 
Fig. 4. Relative modulus vs. volume fraction for dispersed spheres in epoxy above the 

Solid curves are drawn through the d = 10-20 p, 
Dashed curve is obtained by extrapolation of the 

(0 )  d = 5-10 p ;  

glass transition at 1’ = T ,  + 20°C. 
30-40 p, and 75-90 p data points. 
results to d = 0. 
(A) d = 10-20 p ;  ( X )  d = 30-40 p ;  (0) d = 75-90 p. 

A plot of the Mooney equation is also included: 

larger portion of matrix, i.e., greater than (1 - &), since the samples were 
cured between two flat surfaces. The larger spheres lead to a worse condi- 
tion since there is a larger absolute distance over which the resin is present 
in excess. Also, in the center region of the sample, the filler must be present 
in excess for a specific value of &, and thus the extent of nonuniformity in 
distribution increases with particle size. The effect of particle diameter is 
minimized only in the limit as (d/t) approaches zero. 

In order to account for any effect due to the shear field and the corre- 
sponding contribution to G,’ of excess resin at the sample faces, the data 
are extrapolated to d = 0 in Figure 5. The points for Figure 5 are taken 
from the solid curves in Figures 3 and 4 at & = 0.26, and the experimental 
data for d = 5-10 p, at qh = 0.26. The extrapolated values are 2.44 for 
T = T ,  + 20°C and 1.96 for T < To. Curves for an extrapolation to d = 0 
are included in Figures 3 and 4. They are obtained by assuming that the 
slopes of the two solid lines in E’igure 5 are equal to the product of a con- 
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SPHERE DIAMETER (microns) 

Fig. 5. Plot of log relative modulus vs. particle size range at a volume fraction filler of 
Data are obtained from solid curves in Figures 3 and 4 for d = 1&20 p, 3 N O  p ,  

Data are plotted with a 
0.26. 
and 75-90 p, in addition to the d = 5-10 p experimental data. 
f 1% error bracket. 

stant and the volume fraction. The extrapolated values at other volume 
fractions are obtained using this constant, the respective 6 values, and 
data from Figures 3 and 4. 

Damping and Loss Modulus 

The data shown in Figure 1 for damping A and loss modulus G" indicate 
the general behavior when particulate filler is added to polymer. All of the 
curves with dispersed spheres are very similar in shape. One measure of 
damping is the width of the peak, i.e., the temperature interval for which 
damping exceeds 0.5. This interval is 18°C for all conditions of volume 
fraction and sphere diameter. 

The glass transition temperature increases only slightly with volume 
fraction and is the source of a slight shift of the curves with volume fraction. 

If the damping in a filled polymer results only from the same mechanisms 
which produce the damping in the unfilled matrix, then the following ratio 
holdsz3: 

Al? 
- = 41 
Aio 
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Fig. 6. Ratio of damping of filled polymer to unfilled matrix, AF/AIO, vs. volume fraction 
The solid curve is a plot of A F / A ~ ~  = (1 - &) filler at a temperature of 100°C below T,. 

= & : ( O ) d = 5 - 1 0 p ;  ( A ) d =  10-2Op; ( X ) d = 3 0 - 4 0 ~ ;  (O)d=75-90p.  

where A, indicates damping of the unfilled matrix and AF is the damping 
at matrix volume fraction The ratio A F / A ~ ~  is plotted for T = 25°C in 
Figure 6 for all of the glass sphere-epoxy experiments, and a solid curve 
indicates ey. (2 ) .  All of the experimental points are above the solid line, 
indicating additional damping mechanisms are present at all volume frac- 
tions. 

Damping in addition to the prediction of ey. (2) is expected from three 
sources. If the particle size effect on modulus is due to the instrumental 
effect described above, additional damping arises from the excess resin at 
the faces of the sample. The thermal stresses arising from the mismatch 
in thermal expansion coefficients of the phases produce a decrease in relative 
modulus and an increase in damping in the room temperature range. Also, 
there is an anomalous small increase in damping which starts at 60"C, but 
which could have an effect at  room temperature. This anomaloua increase 
occuss under certain conditions which cannot be correlated with any of the 
experimental parameters. When the rise is not present, damping increases 
gradually from 25OC to the start of the transition region. When the in- 
crease is present, it is small, from about 0.04 to 0.06, and occurs at  about 
60°C. The damping then levels off to the start of the transition. One 
possible explanation is that this damping results from friction at the inter- 

The damping data are listed in Table 11. 
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TABLE I1 
Damping Data 

A at (2' - T,) 
Diameter & -100°C -8OOC - 60°C - 40°C - 2O0C 

Aio" 
Aiob 
Aioc 
5-10 p 

la-20 p 

30-40 p 

75-90 p 

75-90 p 
A187 
sc 87 
sc 87 

(thick) 

0 
0 
0 

0.26 
0.10 
0.19 
0.30 
0.41 
0.10 
0.23 
0.30 
0.40 
0.02 
0.05 
0.10 
0.15 
0.19 
0.24 
0.31 
0.32 
0.38 

0.30 
0.30 

0.30 

Dispersed Spheres (Untreated) 

.043 

.045 

.047 

.039 

.043 

.045 

.037 

.039 

.046 

.045 

.042 

.039 

.041 

.045 

.044 

.045 

.041 

.043 

.039 

.039 

.040 

.046 

.047 

.047 
,040 
.046 
.050 
.041 
.037 
,042 
.OM 
.042 
,039 
.045 
.047 
.045 
.045 
f047 
,045 
,042 
.043 
.040 

.065 

.OM 

.051 
,046 
.058 
.062 
,053 
.038 
,050 
.044 
.042 
.040 
.064 
,051 
,060 
.052 
.053 
.056 
.050 
.049 
.042 

Dispersed Spheres (Treated) 

.041 .036 .040 

.049 .048 .048 

.068 .072 .074 

.070 

.064 
,063 
,056 
.067 
,073 
.065 
.046 
,056 
.054 
.052 
.047 
.072 
.059 
.071 
.062 
.062 
.060 
.062 
.059 
.051 

.052 

.054 

,081 

,145 
.116 
.120 
,120 
,120 
.150 
.132 
.084 
.105 
,099 
. 110 
.108 
.140 
.105 
.135 
.120 
,108 
.125 
f110 
.llO 
.llO 

.llO 

.119 

.125 

Aggregated Spheres (15-22 Spheres per Unit) 

0.05 .046 .050 .056 ,069 .125 
0.19 .040 .043 .046 .058 .118 

* Unfilled results for matrix used with spheres of d = 5-10 p and 10-20 p, and agge- 

b Unfilled results for matrix used with spheres of d = 3 M O  p and treated spheres. 
* UnfUed results for matrix used with spheres of d = 75-90 p. 

gates. 

face between matrix and filler and occurs irregularly due to some difference 
in the fabrication procedure of the specimens in which it is observed. 

The effect on damping of surface treatments applied to the filler surface 
is observed by comparison to damping of samples with untreated dispersed 
spheres. For the purpose of comparison, all conditions except the type of 
silane are the same. The silanes for good and poor adhesion are A187 and 
SC 87, respectively (see experimental section). With SC 87, the spheres 
could only be dispersed if the silane is applied from a very dilute solution 
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Fig. 7. Damping and loss modulus vs. temperature for epoxy Wed with 0.30 volume 
(-) A187, (- - -) SC 87; (- -) fraction spheres treated with silanes and untreated: 

SC 87 (thick); (-----)untreated. 

(<<l% in carbon tetrachloride). 
tetrachloride, the thicker coating produces noticeable agglomeration. 

identical. 
as shown in Figure 7. 
Table I11 and show a decrease with A187 and an increase with SC 87. 

With a solution of 0.6% SC 87 in carbon 

The shear moduli curves for treated and untreated spheres are essentially 
Clear differences are evident with damping and loss modulus, 

The glass transition temperatures are listed in 

TABLE I11 
Glass Transition Temperatures 

Treatment dz T,, "C 

A187 
none 
sc 87 
SC 87 (thick) 

0.30 
0.31 
0.30 
0.30 

122 
122 
125 
126 
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Fig. 8. Relative modulus vs. temperature for aggregated spheres in epoxy at two 
volume fractions. For comparison to data with dispersed spheres, the extrapolated 
values of relative modulus from Figures 3 and 4 are: (I' < T,)G,' = 1.57 for & = 0.19, 
G,' = 1.11 for & = 0.05; (T = T, + 20°C) G,' = 1.81 for & = 0.19; G,' = 1.14 for 
$2 = 0.05. 

Below T,  the magnitudes of A and G" are less with A187 coatings com- 
pared to untreated and SC 87-treated spheres; the SC 87-treated spheres 
produce larger damping and loss moduli. The peak in the G" curve is 
narrower with SC 87-treated filler and the shape of the curves reflect the 
shift in T,. The shape of the A curves indicates t'hat for spheres coated 
with A187 and untreated there is a gradual increase with temperature from 
room temperature to temperatures just below the beginning of the large 
rise in damping due to the polymer's main transition. In the two cases 
with SC 87 coatings, the damping curves are flat from room temperature 
until temperatures at the start of the main transition. The width of the 
peaks remain nearly the same for all of the conditions. Above the glass 
transition, it is not possible to distinguish damping and loss modulus for 
composites with treated and untreated filler. 

Moduli of Aggregates 

The relative modulus of permanent aggregates of spheres incorporated 
into the epoxy resin is shown in Figure 8 for two volume fractions, & = 
0.05 and & = 0.19. This is the first time dynamic measurements are re- 
ported on a polymer filled with aggregates characterized according to size, 
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shape, and number of spheres per aggregate. These are the same aggre- 
gates as used in the experimental determination of viscosity of suspensions 
with aggregated spheres. l6 Although the viscosity measurements are 
reported for a series of narrow size ranges, these experiments are limited to 
one of the size ranges. A size range of 15-22 spheres per aggregate is 
selected for two reasons : according to viscosity results these aggregates 
are large enough for behavior of aggregates to be clearly distinguishable 
from spheres; the instrumental error due to absolute size of particles, 
discussed above, is kept to  a minimum. 

The significant result is that the relative moduli in the range T < T ,  ex- 
ceed the extrapolated curves to zero diameter for dispersed spheres (Fig. 3), 
while the ayerage diameter of the aggregates is 130 p. In the temperature 
range T > To, the relative moduli exceed the Mooney curve and the 
extrapolated d = 0 curve. 

Because of the size of the aggregates, the modulus values for these two 
volume fractions could not be expected to approach the values of relative 
viscosity obtained in the measurements with suspensions. The values of 
qr with the aggregates are 6.0 and 1.27 for volume fractions of 6 = 0.19 
and $1 = 0.05, respectively. The maximum values of G, at T > T,  for 
the same values of are 2.25 and 1.25, respectively. 

Damping as measured by log decrement A or G"/G' is considerably 
reduced compared to damping of dispersed spheres at  the same volume 
fractions. Listed in Table I1 are the values of A,, and Ae/Alo, where A, and 
Alo represent damping with the composite and unfilled polymer, respec- 
tively. 

Tensile Properties of the Matrix 

The stress-strain properties of the unfilled epoxy resin are shown in 
Figure 9 for three temperatures below T,. The tensile experiments of the 
unfilled polymer are of interest because the relative moduli of the com- 
posites are defined relative to the unfilled polymer. We recently attributed 
the temperature dependence of relative modulus of reinforced polymers to 
the mismatch of the thermal expansion coefficients of the phases and the 
resulting tensile stresses in the matrix. Because of the strespes, the modulus 
of the polymer in the vicinity of each filler particle is lower than the mod- 
ulus of unfilled polymer El", even though the modulus of the filled system 
E, is greater than that of unfilled polymer. 

The tensile properties of the resin are used to describe the extent to 
which the matrix modulus changes, which is used to predict the tempera- 
ture dependence of the relative modulus of the filled polymer. 

Since stress u is a nonlinear function of strain E for polymers, it can be 
expressed as12 

u = a s + b s 2 +  ,., (3) 
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%, 
Fig. 10. Radio of tangent modulus to Young's modulus of matrix, Eu/E0, vs. ratio of 

A plot of eq. (4) is also included: stress to yield stress, u/uy, at three temperatures. 
(-)eq. (4); (--) 25OC; (-.-) 55OC; (-) 85°C. 

The boundary conditions lead to the following expression for the slope of 
the stress-strain curve E ,  at stress level a: 

where El0 is Young's modulus of the matrix and uy is the yield stress of the 
matrix defined by an extrapolation of the curves in Figure 9 to zero slope. 
Values of (Eu/Elo),  calculated from the stress-strain data for the three 
temperatures, are shown in Figure 10 along with a curve corresponding to 
[l - (./cry) ]'Ia. The fairly close agreement between experiment and the 
value of [I - ( U / U ~ ) ] ' / ~  indicates the series expansion is a good representa- 
tion of the stress-strain behavior. Also, the curves indicate the amount 
that the tangent modulus of a material can be decreased owing to 
residual stresses. 

MODIFICATION OF KERNER EQUATION 
Agreement between the relative modulus and relative viscosity is ex- 

pected only for the case of G2'/Gl' + 0 1 .  For all finite values, the bound- 
ary conditions at & = 1.0 and & = +,,, depress the volume fraction de- 
pendence of G,' over the range of 0 < & < dm. However, the effect of 
Gz'/G1' is to lower the relative modulus to a greater extent below T, com- 
pared to above Tp.  



PROPERTIES OF PARTICULATEFILLED COMPOSITES 1467 

The Mooney equation, 

which characterizes the dependence of relative viscosity on volume fraction 
for a suspension of dispersed spheres, should also hold for shear moduli, 
provided Poisson’s ratio of the matrix is 0.5 and G2‘/Gl’ is a very large 
number. In this equation l e ~  is the Einstein coefficient, equal to 2.5 for 
dispersed spheres. Because of the above restrictions, the Mooney equation 
is not adequate when the matrix is a rigid material. For rigid matrices, the 
Kerner equation? or the analogous Hashin-Shtrikman equation24 is the best 
approximation to the experimental values, although these equations are 
lower bounds and predict values less than the experimental values. 

The Kerner equation may be put in the form25 

G,’ 1 + AB& - -  - 
GIf 1 - B& 

where 

(G2’/Gif) - 1 
(G2’/G1’) + A‘ 

7 - 5 V l  A = ____ 
8 - l 0 V l  

and B = 

VOLUME FRACTION FILLER, 92 

Fig. 11. Plot of eqs. (9) and (10) for a packing volume of 0.64 compared with the analo- 
gous behavior for the Mooney and original Kerner equations. 
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VOLUME FRACTION OF FILLER, 

Fig. 12. Dependence of relative modulus on concentration for (A) the original Kerner 
Circles cor- 

Solid curve9 are calculated with 
equation; (B) the modified Kerner equation; (C) the Mooney equation. 
respond to experimental results as plotted in Figure 3. 
vl2 = 0.35, G,/Gll = 25, and .&, = 0.64. 

Improvement can be made by taking into account the maximum packing 
fraction qL,, by the introduction of an additional function + to modify the 
Kerner equation in a manner analogous to the Mooney equation, as 
follows : 

G,' 1+ AB & _ -  - 
GI' 1 - B+&' 

The boundary conditions imposed upon I&, are: 

(1) +& = 0 at & = 0; 

The first two of these conditions ensure Einstein behavior at low concen- 



PROPERTIES OF PARTICULATEFILLED COMPOSITES 1469 

trations. 
which give reasonable agreement with experimental results are : 

Two of the simplest functions that fuKll these conditions and 

These equations are illustrated in Figure 11. 
Figure 12 compares the experimental data on the epoxy resin filled with 

glass beads, the original Kerner equation, the generalized Kerner equation 
using+, = 0.64 andeq. (10) for $42, and the Mooney equation. The theo- 
retical Kerner equations are still both lower bounds, but the introduction of 
+,,, brings the predicted values much closer to the experimental values. 

DISCUSSION OF EXPERIMENTAL RESULTS 
The data presented here for shear modulus and damping of the epoxy- 

glass composites and also for the tensile properties of the matrix are 
sufficient for a complete description of the dynamic properties of par- 
ticulate reinforced polymers. 

The relative shear moduli for dispersed and aggregated particles are 
clearly different as indicated in Figures 2 and 8. The volume fraction de- 
pendence can be described very accurately for dispersed spheres as shown 
in Figures 3 and 4. The dependence of G,' on 42 is very dependent on 
G2'/G1' and very probably on +, also, as described in the previous section. 
The data below and above T, correspond to values of G2'/G1' equal to 25 
and 2000, respectively. It was not possible to vary +,,, with dispersed 
spheres, but the aggregated spheres represent a filler with +,,, much less 
than the value for dispersed spheres. 

The contributions to the relative shear modulus from both the particle 
size effect and the induced tensile stresses are evaluated by extrapolations. 
The amount of the contribution because of increasing particle diameter is 
estimated by an extrapolation of sphere diameter, whereas for the induced 
stresses, the data below the glass transition are extrapolated as a function 
of temperature to T,, where the magnitude of the induced stresses is zero. 
The experimental data taking into account both extrapolations are shown 
in Figure 12. 

These effects of induced stresses and filler particle size are not essential 
to a general description of the relative modulus behavior of a reinforced 
polymer. The dsta here include both effects and the magnitude of each is 
approximated by the extrapolation. The contributions from these effects 
are very likely the reason for the discrepancies between different sets of 
experimental data in the literature, and also between experimental and 
theoretical results. 

An interpretation of the dynamic properties requires that effects asso- 
ciated with damping are also related to relative modulus results. Thus, 
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the additional damping mechanisms producing the condition (AF/A,,) > 
are a factor in determining the relative shear modulus behavior. For this 
reason, identification of contributions to relative modulus from particle 
size and induced stress effects is evidence they are sources of additional 
damping in the system. 

The condition of a surface treatment such as SC 87 increasing the damp- 
ing of a filled system to a level higher than the unfilled resin indicates the 
usefulness of such particulate-reinforced materials for increased damping 
compared to the unfilled material. 

Low damping is obtained with samples reinforced with aggregates of 
spheres, and this is an indication that the matrix can be divided into “free” 
and “entrapped” portions, as in the case of the fluid for the relative viscos- 
ity measurements on suspensions of aggregates. 

The damping is produced by the volume fraction of resin which is free, 
while the entrapped matrix essentially reduces the value of qk, indicating 
the relative modulus increases with volume fraction at a faster rate for 
aggregates compared to dispersed spheres. 

Our recent paper on the temperature dependence of relative modulus 
below T, describes the decrease in G,‘ with decreasing temperature as the 
result of induced tensile stresses in the matrix of the composite. For 
polymeric matrices, the tensile properties of the resin are important since 
they establish the extent to which the stiffness and strength of the com- 
posite are decreased. Generally, it is very difficult to use the induced 
stresses to advantage, because if they improve the reinforcement in one 
direction, a decrease in properties in the plane perpendicular to this direc- 
tion is expected. The requirement to closely match the thermal expansion 
coefficients of the constituents follows directly. For the epoxy and glass 
sphere data for & = 0.41 in Figure 2, almost 20% of the increase in modulus 
obtained with the filler is lost at room temperature primarily because of 
the inducedl stresses. 

Schwarzl et aL26s2’ have shown that the theory of van der PoelZ8 seems 
to hold for the moduli of f l e d  polymers. There are two assumptions in 
van der Poel’s development which do not seem to be consistent with the 
experimental data. The theory assumes that Poisson’s ratio for the matrix 
is always 0.5 and, also, it does not take into account the maximum allowable 
packing of the reinforcing phase dm. For these reasons we believe the 
modified Kerner equation represents the available data better than does 
the theory of van der Poel. 
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